Labeling the data
Last updated
Last updated
The aim of the model is to detect a good or bad example of a screw from a given photograph. In this section, you will label photographs of screws that will be used to train your model.
Data labeling is a critical part of model development for machine learning. By using a well-defined dataset, data scientists can train effective models.
In this tutorial, we will:
Using , an open-source data labeling tool, to label data and train a model. Label Studio is available as part of , a convenient way to integrate 3rd-party apps into your ML Workflow.
Configure the Label Studio project setting and label the images.
Export the labeling Json-format output file.
Label Studio is an open-source data labeling web platform. You can label the images, videos, texts, and audio to do your machine learning. It is convenient and easy to annotate the data files for the users. You can see more detail on the Label Studio Website and the documentation.
We can easily start the label studio platform in the PrimeHub platform. You can follow the document to learn how to in PrimeHub Apps.
Create a group and for storage:
Download the and unzip the file.
PrimeHub user portal → Apps → + Application
→ Label Studio → Fill in the information:
Name
label studio - screw
InstanceTypes
CPU 1
Click Create → Fill in the information:
Project name
Screw Defect Detection
Data Import
Upload the screw image.
Labeling Setup
Custom Template → Fill in the code below.
In the screw project, click Label All Tasks to start labeling.
For each image, click either the good or bad checkbox, use the keyboard numbers 1 for good or 2 for bad, and then click the Submit button to proceed to the following image.
You can use the export UI to download the JSON-formatted files to your local computer.
In this tutorial, we have enabled a group volume, installed Label Studio via PrimeHub Apps, and labeled a set of images. Using the labeled dataset, we can move on to the next step.
In the following tutorial, we will create a notebook to train the screw classification model and manage the model via MLFlow.